Formation of Poly(Methyl Methacrylate) with Novel Solubility Characters in the Photopolymerization with Bis(cyclopentadienyl)titanium Dichloride in a Water-Methanol Mixture

TSUNEYUKI SATO, TATSUO UMENOKI, MAKIKO SENO

Department of Chemical Science and Technology, Faculty of Engineering, Tokushima University, Minamijosanjima 2-1, Tokushima 770, Japan

Received 18 September 1996; accepted 27 October 1997

ABSTRACT: Methyl methacrylate (MMA) was observed to be easily polymerized in the photopolymerization with bis(cyclopentadienyl)titanium dichloride (Cp_2TiCl_2) in a water-methanol mixture under irradiation of a 15-W fluorescent room lamp. The polymerization proceeded heterogeneously. The rate (R_p) of heterogeneous photopolymerization in a 1 : 1 (v/v) water-methanol mixture at 40°C was apparently given by $R_p = k[Cp_2TiCl_2]^{0.2}$ [MMA]^{2.4}. The resulting poly(MMA) was found to contain a tetrahydrofuran (THF)-insoluble part. The separated THF-insoluble part differed significantly from the usual radical poly(MMA) in solubility characters. It is of great interest that the THF-insoluble poly(MMA) was soluble in benzene and toluene, but insoluble in polar solvents, such as ethyl acetate, acetone, methyl ethyl ketone, dimethylformamide, and dimethylsulfoxide. The copolymerization results of MMA and acrylonitrile revealed that the present photopolymerization initiated with Cp_2TiCl_2 proceeds *via* a radical mechanism. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 525–531, 1998

Key words: photopolymerization; methyl methacrylate; solubility character; bis-(cyclopentadienyl)titanium dichloride

INTRODUCTION

Various metallocenes and their combinations with methylaluminoxane have been intensively studied as catalysts for the polymerizations of olefins, most of which proceed through coordination mechanisms to give stereospecific polymers.¹⁻⁹

On the other hand, combined systems of metallocenes and organic halides or acid anhydrides were reported to initiate radical polymerizations of vinyl monomers, although the metallocenes alone show little initiating activity.^{10–14} Some living polymerization characters were observed in the polymerization of methyl methacrylate (MMA) initiated with the binary system of cobaltocene and bis(ethyl acetoacetato)copper(II) in acetonitrile.¹⁵⁻¹⁷

In the preceding article, we found that bis-(cyclopentadienyl)titanium dichloride (Cp₂TiCl₂) serves as an effective initiator for the radical polymerization of MMA in a water-methanol (H₂O-MeOH) mixture, and it was of great interest that the resulting poly(MMA) contains a considerable fraction of novel solubility characters.¹⁸

Recently, we have found that the MMA polymerization with Cp_2TiCl_2 is profoundly accelerated, even by irradiation of a 15-W fluorescent room lamp, although Cp_2TiCl_2 was reported to act scarcely as a photoinitiator for MMA in bulk.¹⁹

Correspondence to: T. Sato.

Journal of Applied Polymer Science, Vol. 69, 525-531 (1998)

^{© 1998} John Wiley & Sons, Inc. CCC 0021-8995/98/030525-07

The present article describes the results obtained in the photopolymerization of MMA with Cp_2TiCl_2 in a $H_2O-MeOH$ mixture under irradiation of a 15-W fluorescent room lamp and presents a characterization of the resulting polymer.

EXPERIMENTAL

MMA was freed from inhibitor by treatment with a 5% NaOH aqueous solution, dried over anhydrous sodium sulfate, and distilled. Acrylonitrile (AN) and organic solvents were used after distillation. Ion-free water was used. Cp_2TiCl_2 (supplied from Nichia Chemical Industries, Tokushima, Japan) was used without further purification.

Polymerization and copolymerization of MMA were performed in degassed and sealed glass tubes without shaking under irradiation of a 15-W fluorescent room lamp (Toshiba FL 15EX-N-H) from a distance of 60 cm. The resulting polymers were isolated by pouring the polymerization mixtures into a large excess of MeOH containing small amounts of 4-*tert*-butyl-catechol as inhibitor and HCl. The precipitated polymers were filtered, dried under vacuum, and weighed. Poly(MMA) was further divided into soluble and insoluble parts in tetrahydrofuran (THF).

¹H-NMR spectra were obtained in deuterochloroform with a Jeol GX-400 (400 MHz) spectrometer. Infrared spectra were recorded on a Perkin–Elmer 1600 FT-IR spectrometer. Gel permeation chromatography (GPC) was performed with a Toso HLC-802H chromatograph at 38°C using THF as eluent. The number-average (\overline{M}_n) and weight-average (\overline{M}_w) molecular weights were estimated from the GPC results by calibration with polystyrene standards. \overline{M}_w of poly(MMA) was also viscometrically determined using eq. (1),²⁰ wherein the intrinsic viscosity ([η]) was measured in benzene at 25°C with a Ubbelohde viscometer;

$$[\eta] = 5.5 \times 10^{-3} (\bar{M}_w)^{0.76} (\,\mathrm{mL}\;\mathrm{g}^{-1}) \qquad (1)$$

Dynamic thermogravimetry (TG) of poly(MMA) was performed in a nitrogen atmosphere (flow rate: 20 mL min⁻¹) on a Shimadzu TG-50 thermogravimeter at a heating rate of 10°C/min. A differential scanning calorimeter (DSC) (Shimadzu DSC-50) was used for thermal analysis of poly-(MMA) (heating rate: 10°C min⁻¹). Electron spin

Figure 1 Temperature effect on the photopolymerization of MMA with Cp₂TiCl₂ in a H₂O-MeOH [1 : 1 (v/v)] mixture; [MMA] = 0.935 mol L⁻¹, [Cp₂TiCl₂] = 1.50×10^{-3} mol L⁻¹.

resonance (ESR) spectrum of the polymerization mixture in a degassed and sealed ESR tube was recorded with a Jeol-JES-FE2XG spectrometer operating at X-band (9.5 GHz) with a transverse electric field mode cavity.

RESULTS AND DISCUSSION

Photopolymerization of MMA with Cp_2TiCl_2 in a $H_2O-MeOH$ Mixture

Polymerization of MMA with Cp₂TiCl₂ in a H₂O-MeOH [1:1(v/v)] was conducted at different temperatures under irradiation of a fluorescent lamp (15 W), wherein the concentrations of MMA and initiator were 0.935 and 1.5×10^{-3} mol L⁻¹, respectively. The polymerization proceeded heterogenously because the resulting poly(MMA) was insoluble in the medium. Figure 1 shows the results observed. In general, the temperature effect on the photopolymerization is small because the photoinitiation is almost insensitive to the temperature. A large accelerating effect by temperature was, however, observed in the range of 20-40°C in the present polymerization, although a further raise in temperature caused only a small effect.

Figure 2 Effect of the Cp_2TiCl_2 concentration on the photopolymerization of MMA with Cp_2TiCl_2 in a $H_2O-MeOH~[1:1~(v/v)]$ mixture at 40°C; [MMA] = 0.935 mol L^{-1} . $[Cp_2TiCl_2]$: 1, 0.50 \times 10 $^{-3}$; 2, 1.00 \times 10 $^{-3}$; 3, 1.50 \times 10 $^{-3}$; 4, 2.00 \times 10 $^{-3}$ mol L^{-1} .

Figure 2 illustrates the time-conversion curves observed in the photopolymerization of MMA with Cp_2TiCl_2 at 40°C in a H₂O-MeOH [1 : 1 (v/v)] mixture when [Cp_2TiCl_2] was changed and [MMA] was fixed at 0.935 mol L⁻¹. The initial polymerization rate (R_p) was found to be proportional to the 0.2 order of [Cp_2TiCl_2].

Figure 3 presents the time-conversion curves for the photopolymerization of MMA with Cp₂-TiCl₂ in a H₂O-MeOH [1 : 1 (v/v)] mixture when [MMA] was varied and [Cp₂TiCl₂] was kept constant at 1.5×10^{-3} mL L⁻¹. R_p increased in proportion to the 2.4 order of [MMA]. Thus, R_p at 40°C was apparently expressed by eq. (2);

$$R_{p} = k [Cp_{2}TpCl_{2}]^{0.2} [MMA]^{2.4}$$
(2)

Figure 4 illustrates the time-conversion curves observed when the composition of polymerization medium was changed. The present polymerization was profoundly accelerated with increasing H_2O content.

Photocopolymerization of MMA and AN with Cp_2TiCl_2 in a $H_2O-MeOH$ Mixture

To clarify the polymerization mechanism, the photocopolymerization of AN (M_1) and MMA (M_2)

Figure 3 Effect of the MMA concentration on the photopolymerization of MMA with Cp₂TiCl₂ in a H₂O-MeOH [1 : 1 (v/v)] mixture at 40°C; [Cp₂TiCl₂] = 1.50 \times 10⁻³. [MMA]: 1, 0.30; 2, 0.50; 3, 0.60; 4, 0.80; 5, 0.935 mol L⁻¹.

with Cp_2TiCl_2 was conducted in a $H_2O-MeOH$ [1:1(v/v)] mixture at 40°C. Figure 5 shows the copolymer composition curve obtained, together

Figure 4 Effect of medium composition on the photopolymerization of MMA with Cp₂TiCl₂ in a H₂O–MeOH mixture at 40°C; [MMA] = 0.935 mol L⁻¹, [Cp₂TiCl₂] = 1.50×10^{-3} mol L⁻¹. Vol % of H₂O in the H₂O–MeOH mixture: 1, 50; 2, 40; 3, 30; 4, 10.

AN in comonomer (mol%)

Figure 5 Copolymer composition curves for the photocopolymerizations of AN and MMA with $Cp_2TiCl_2(\bullet)$ and with MAIB (\bigcirc) at 40°C in a H₂O–MeOH [1 : 1 (v/v)] mixture.

with that observed in the photocopolymerization in the same medium initiated by dimethyl 2,2'azobisisobutyrate (MAIB), a typical radical azo initiator. The copolymer composition was calculated from the nitrogen content by elemental analysis. The two composition curves are closely similar to each other, giving similar monomer reactivity ratios; $r_1 = 0.12$, $r_2 = 2.3$ for the photopolymerization with Cp₂TiCl₂ and $r_1 = 0.16$, $r_2 = 2.2$

Time (hr)

Figure 6 Time-profile for the total yield and the fractions of THF-soluble (white area) and THF-insoluble parts (shaded area) in the photopolymerization of MMA with Cp₂TiCl₂ at 40°C in a H₂O–MeOH [1 : 1 (v/v)] mixture; [MMA] = 0.935 mol L⁻¹, [Cp₂TiCl₂] = 1.50×10^{-3} mol L⁻¹.

for the photopolymerization with MAIB. This finding reveals that the present photopolymerization proceeds *via* a radical mechanism, as well as the polymerization with Cp_2TiCl_2 in the dark.

Formation of Poly(MMA) with Novel Solubility

Poly(MMA) formed in the present photopolymerization was found to contain a considerable frac-

Table I Solubilities of the THF-Soluble and THF-Insoluble Parts of Poly(MMA) Formed in the Photopolymerization with Cp_2TiCl_2 in a $H_2O-MeOH$ [1:1 (v/v)] Mixture at 40°C^a

Solvent	THF-Insoluble	THF-Soluble	Radical Poly(MMA) ^b
Benzene	Soluble	Soluble	Soluble
Toluene	Soluble	Soluble	Soluble
Chloroform	Soluble	Soluble	Soluble
THF	Insoluble	Soluble	Soluble
Ethyl acetate	Insoluble	Soluble	Soluble
Acetone	Insoluble	Soluble	Soluble
Methyl ethyl ketone	Insoluble	Soluble	Soluble
Acetonitrile	Insoluble	Insoluble	Soluble
DMF	Insoluble	Soluble	Soluble
DMSO	Insoluble	Soluble	Soluble

^a [MMA] = 0.935 mol L⁻¹, [Cp₂TiCl₂] = 1.50×10^{-3} mol L⁻¹.

^b Prepared by the polymerization with MAIB at 50°C in benzene.

						Fraction (%)		THF-Soluble Part		
$\frac{[\text{Cp}_2\text{Ti}\text{Cl}_2]}{\times 10^3}$ (mol L ⁻¹)	$[\text{MMA}] \\ (\text{mol } L^{-1})$	$[{\rm H_{2}O}] \\ (\%)^{\rm a}$	Temperature (°C)	Time (hr)	Total Yield (%)	THF- Soluble	THF- Insoluble	$\overline{ar{M}_n imes}_{10^{-5}}$	$ar{M}_w imes 10^{-5}$	$ar{M}_w/ar{M}_n$
1.50	0.935	50	20	10	60.2	60	40	5.1	15.0	2.9
1.50	0.935	50	30	10	93.1	64	36	6.0	15.9	2.7
1.50	0.935	50	40	10	77.2	61	39	6.3	15.2	2.4
1.50	0.935	50	50	10	90.1	45	55	6.2	16.3	2.6
1.50	0.935	50	60	10	96.6	44	56	6.4	16.1	2.5
0.50	0.935	50	40	10	70.2	69	31	12.1	22.5	1.9
1.00	0.935	50	40	10	74.0	64	36	9.2	18.4	2.0
2.00	0.935	50	40	10	87.9	74	26	5.4	17.3	3.2
5.00	0.935	50	40	10	66.2	94	6	3.8	14.4	3.8
10.0	0.935	50	40	10	45.4	98	2	1.9	13.4	7.2
1.50	0.30	50	40	10	23.0	100	0	1.4	6.1	4.2
1.50	0.50	50	40	10	26.4	98	2	2.7	9.4	3.5
1.50	0.60	50	40	10	34.7	92	8	4.2	12.8	3.1
1.50	0.80	50	40	10	65.7	68	32	5.3	14.9	2.8
1.50	0.935	10	40	10	23.2	100	0	2.6	9.3	3.6
1.50	0.935	20	40	10	63.7	100	0	4.2	15.1	3.6
1.50	0.935	30	40	10	66.0	100	0	4.8	15.4	3.2
1.50	0.935	40	40	10	74.1	94	0	4.9	15.5	3.2

 Table II
 Fractions of the THF-Soluble and THF-Insoluble Parts of Poly(MMA) Formed under Various Photopolymerization Conditions

^a Vol % of H_2O in the H_2O -MeOH mixture.

tion of THF-insoluble parts. Elemental analysis of the THF-soluble and THF-insoluble parts established that neither part contained any inorganic residue.

The THF-insoluble poly(MMA) was observed to show novel solubility characters. It was soluble in benzene and toluene, but insoluble in polar solvents, such as acetone, dimethylformamide (DMF), and dimethylsulfoxide (DMSO). Table I compares the solubilities in various solvents of the THF-soluble part, the THF-insoluble part, and poly(MMA) separately prepared by the MAIB-initiated polymerization. Thus, the THFinsoluble poly(MMA) formed in the radical photopolymerization initiated with Cp₂TiCl₂ in a H₂O– MeOH mixture is quite different in solubility from the usual radical poly(MMA).

Figure 6 shows a time profile for the total yield and the fractions of THF-soluble and insoluble parts in the photopolymerization of MMA (0.935 mol L⁻¹) with Cp₂TiCl₂ (1.50×10^{-3} mol L⁻¹) in a H₂O-MeOH mixture [1:1(v/v)]. An induction period of about 2 h was observed for formation of the THF-insoluble part. The polymer formed after the induction period was THF-insoluble for the most part.

Table II summarizes the results of fractionation of poly(MMA)s produced in the photopolymerization at 40°C for 10 h under various conditions. The fraction of THF-insoluble part tended

Table III Photopolymerization of MMA with Cp_2TiCl_2 in H_2O -Various Solvent [1 : 1 (v/v)] Mixtures at 40°C for 10 h^a

Solvent	Polymer Yield (%)	Fraction of THF- Insoluble Part (%)
Methanol	27.4	18.7
Ethanol	32.4	Trace
<i>n</i> -Propanol	10.9	0.0
Isopropanol	11.1	0.0
THF	1.1	0.0
DMF	59.4	0.0
DMSO	9.9	0.0
Acetone	2.8	0.0
Acetic acid	13.3	0.0

^a [MMA] = 0.60 mol L⁻¹, [Cp₂TiCl₂] = 1.50×10^{-3} mol L⁻¹.

Figure 7 DSC curves of the THF-soluble (1) and THF-insoluble (2) parts and poly(MMA) formed with MAIB (3).

to increase with rising temperature, increasing MMA concentration, and increasing H_2O content. On the other hand, the THF-insoluble fraction showed a maximum on varying the Cp_2TiCl_2 concentration.

The molecular weights of the THF-soluble parts are also listed in Table II. The \bar{M}_n value was in the range of $1.4-12.1 \times 10^5$. The molecular weight increased with decreasing initiator concentration, increasing monomer concentration, and increasing H₂O content. The polydispersity (\bar{M}_w/\bar{M}_n) in turn decreased with increasing Cp₂TiCl₂ concentration, decreasing MMA concentration, and decreasing H₂O content. Temperature showed little effect on the molecular weight and polydispersity of the THF-soluble part.

The photopolymerization of MMA with Cp₂-TiCl₂ was examined using other H₂O-miscible organic solvents in place of MeOH, whereas the concentrations of monomer and initiator were 0.60 and 1.50×10^{-3} mol L⁻¹, respectively. The results obtained are presented in Table III. Although a much higher polymer yield was observed in DMF, the resulting poly(MMA) contained no THF-insoluble part. A little THF-insoluble part was also obtained in other solvents used.

The molecular weight of the THF-insoluble part was viscometrically determined in benzene and compared with that of the THF-soluble part, of which the original poly(MMA) was prepared in the photopolymerization of MMA (0.935 mol L⁻¹) with Cp₂TiCl₂ (1.50 × 10⁻³ mol L⁻¹) at 40°C for 10 h in a H₂O–MeOH [1 : 1 (v/v)] mixture: \overline{M}_w $= 3.4 \times 10^{5}$ (insoluble part) and 2.5×10^{6} (soluble part). It is of interest that the THF-insoluble part had a fairly lower molecular weight than the THF-soluble part.

It has been known that isotactic poly(MMA) and syndiotactic poly(MMA) associate to form a crystalline complex in certain solvents, such as toluene, DMF, and acetone.²¹ So, we have examined the tacticities of THF-soluble and THF-insoluble parts. However, ¹H-NMR-determined tacticities of both parts were closely similar to that of the usual radical poly(MMA) as follows: soluble part—rr = 62.5, mr = 33.7, mm = 3.8; insoluble part—rr = 62.4, mr = 33.8, mm = 3.8; and radical poly(MMA)—rr = 61.8, mr = 34.5, mm = 3.7.

The infrared and Raman spectra of the THFsoluble and THF-insoluble parts were also nearly the same as those of radical poly(MMA) separately prepared.

Figure 7 shows DSC curves of the THF-soluble and THF-insoluble parts, together with that of radical poly(MMA). Little difference was observed between these DSC curves. As shown in Figure 8, both of the THF-soluble and THF-insol-

Figure 8 TG and differential thermogravimetric (DTG) curves of the THF-soluble (1) and THF-insoluble (2) parts.

Figure 9 ESR spectrum observed in the photopolymerization of MMA with Cp_2TiCl_2 in a $H_2O-MeOH$ [1 : 1 (v/v)] at 40°C for 2.5 h.

uble parts gave similar TG and differential thermogravimetric curves.

ESR Study on the Polymerization System

Figure 9 presents ESR spectrum observed in the photopolymerization of MMA with Cp_2TiCl_2 in a $H_2O-MeOH$ [1 : 1 (v/v)]. A large absorption observed is due to Ti^{3+} . Photolysis of Cp_2TiCl_2 was reported to yield a Ti^{3+} species.²² The Ti^{3+} species is suggested to play an important role in the present photopolymerization though the true initiation mechanism is obscure at present.

The authors are grateful to Dr. Y. Kubo (JASCO Corporation) for Raman spectrum measurements. A part of this work was supported by the Satellite Venture Business Laboratory, "Nitride Photonic Semiconductor Laboratory," of Tokushima University.

REFERENCES

- J. C. W. Chien and D. Hei, J. Polym. Sci., Polym. Chem. Ed., 29, 1585 (1991).
- 2. R. L. Halterman, Chem. Rev., 92, 965 (1992).
- J. Okada, Angew. Chem. Int. Ed. Engl., 31, 47 (1992).
- C. Sishta, R. M. Hathorn, and T. J. Mark, J. Am. Chem. Soc., 114, 112 (1992).
- G. W. Coates and R. M. Waymouth, J. Am. Chem. Soc., 115, 91 (1993).
- I. Tritto, M. C. Sacchi, and S. Li, *Macromol. Rapid* Commun., 15, 217 (1994).
- K. Soga, T. Uozumi, M. Saito, and T. Shiono, *Macromol. Chem. Phys.*, **195**, 1503 (1994).
- A. Grassi, C. Pellecchia, and L. Oliva, *Macromol. Chem. Phys.*, **196**, 1093 (1995).
- A. Rossi, J. Zhang, and G. Odian, *Macromolecules*, 29, 2331 (1996).
- 10. K. Kaeriyama, Polymer, 12, 422 (1971).
- 11. C. H. Bamford, J. Polym. Sci., Part C., 4, 1571 (1964).
- S. Kubota and T. Otsu, *Kobunshi Ronbunshu*, 31, 759 (1974).
- T. Ouchi, H. Taguchi, and M. Imoto, J. Macromol. Sci.-Chem., A12, 719 (1978).
- 14. Y. Mun and T. Otsu, Polym. Bull., 11, 109 (1984).
- 15. Y. Mun, T. Sato, and T. Otsu, *Makromol. Chem.*, **185**, 1493 (1984).
- Y. Mun, T. Sato, and T. Otsu, *Makromol. Chem.*, 185, 1507 (1984).
- Y. Mun, T. Sato, and T. Otsu, J. Macromol. Sci.-Chem., A21, 639 (1984).
- T. Sato, T. Umenoki, M. Seno, and H. Tanaka, J. Macromol. Sci.-Chem., A32, 1329 (1995).
- K. Kaeriyama and Y. Shimura, J. Polym. Sci., Polym. Chem. Ed., 10, 2833 (1972).
- 20. H.-J. Cantow and G.V. Schulz, Z. Phys. Chem. (Frankfurt), 2, 117 (1954).
- K. Hatada, T. Kitayama, K. Ute, N. Fujimoto, and N. Miyatake, *Macromol. Symp.*, 84, 113 (1994).
- Z.-T. Tsai and C. H. Brubaker, Jr., J. Organometal. Chem., 166, 199 (1979).